Quasi-Static Scheduling of Communicating Tasks
نویسندگان
چکیده
Good scheduling policies for distributed embedded applications are required for meeting hard real time constraints and for optimizing the use of computational resources. We study the quasi-static scheduling problem in which (uncontrollable) control flow branchings can influence scheduling decisions at run time. Our abstracted distributed task model consists of a network of sequential processes that communicate via point-to-point buffers. In each round, the task gets activated by a request from the environment. When the task has finished computing the required responses, it reaches a pre-determined configuration and is ready to receive a new request from the environment. For such systems, we prove that determining the existence of a scheduling policy that guarantees upper bounds on buffer capacities is undecidable. However, we show that the problem is decidable for the important subclass of “data-branching” systems in which control flow branchings are exclusively due to data-dependent internal choices made by the sequential components. This decidability result exploits ideas derived from the Karp and Miller coverability tree for Petri nets as well as the existential boundedness notion of languages of message sequence charts.
منابع مشابه
Combining Static and Dynamic Scheduling for Real-Time Systems
We address in this paper the combination of static and dynamic scheduling into an approach called quasi-static scheduling, in the context of real-time systems composed of hard and soft tasks. For the particular problem discussed in this paper, a single static schedule is too pessimistic while a purely dynamic scheduling approach causes a very high on-line overhead. In the proposed quasi-static ...
متن کاملBubble scheduling: A quasi dynamic algorithm for static allocation of tasks to parallel architectures
We propose an algorithm for scheduling and allocation of parallel programs to message-passing architectures. The algorithm considers arbitrary computation and communication costs, arbitrary network topology, link contention and underlying communication routing strategy. While our technique is static, the algorithm is quasi dynamic because it is not specific to any particular system topology and...
متن کاملQuasi-Static Scheduling of Embedded Software Using Equal Conflict Nets
Embedded system design requires the use of eecient scheduling policies to execute on shared resources, e.g. the processor, algorithms that consist of a set of concurrent tasks with complex mutual dependencies. Scheduling techniques are called static when the schedule is computed at compile time, dynamic when some or all decisions are made at run-time. The choice of the scheduling policy mainly ...
متن کاملQuasi - Static Scheduling of Embedded
Embedded system design requires the use of eecient scheduling policies to execute on shared resources, e.g. the processor, algorithms that consist of a set of concurrent tasks with complex mutual dependencies. Scheduling techniques are called static when the schedule is computed at compile time, dynamic when some or all decisions are made at run-time. The choice of the scheduling policy mainly ...
متن کاملQuasi-Static Scheduling for Multiprocessor DSP
Scheduliig strategies for multiprocessor DSP are classified into four types: fully-dynamic, static-assignment, self-timed, and fully-static. The concept of static scheduling (self-timed or fullystatic) is extended to handle non-deterministic actors in the proposed quasi-static scheduling. Quasi-static scheduling minimizes run-time overhead with increased compilation complexity, thus adequate fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008